
13

Advanced Tree Structures

This chapter introduces several tree structures designed for use in specialized appli-
cations. The trie of Section 13.1 is commonly used to store strings and is suitable
for storing and searching collections of strings. It also serves to illustrate the con-
cept of a key space decomposition. The AVL tree and splay tree of Section 13.2
are variants on the BST. They are examples of self-balancing search trees and have
guaranteed good performance regardless of the insertion order for records. An
introduction to several spatial data structures used to organize point data by xy-
coordinates is presented in Section 13.3.

Descriptions of the fundamental operations are given for each data structure.
Because an important goal for this chapter is to provide material for class program-
ming projects, detailed implementations are left for the reader.

13.1 Tries

Recall that the shape of a BST is determined by the order in which its data records
are inserted. One permutation of the records might yield a balanced tree while
another might yield an unbalanced tree in the shape of a linked list. The reason is
that the value of the key stored in the root node splits the key range into two parts:
those key values less than the root’s key value, and those key values greater than
the root’s key value. Depending on the relationship between the root node’s key
value and the distribution of the key values for the other records in the the tree, the
resulting BST might be balanced or unbalanced. Thus, the BST is an example of a
data structure whose organization is based on an object space decomposition, so
called because the decomposition of the key range is driven by the objects (i.e., the
key values of the data records) stored in the tree.

The alternative to object space decomposition is to predefine the splitting posi-
tion within the key range for each node in the tree. In other words, the root could be

447

448 Chap. 13 Advanced Tree Structures

predefined to split the key range into two equal halves, regardless of the particular
values or order of insertion for the data records. Those records with keys in the
lower half of the key range will be stored in the left subtree, while those records
with keys in the upper half of the key range will be stored in the right subtree.
While such a decomposition rule will not necessarily result in a balanced tree (the
tree will be unbalanced if the records are not well distributed within the key range),
at least the shape of the tree will not depend on the order of key insertion. Further-
more, the depth of the tree will be limited by the resolution of the key range; that is,
the depth of the tree can never be greater than the number of bits required to store
a key value. For example, if the keys are integers in the range 0 to 1023, then the
resolution for the key is ten bits. Thus, two keys might be identical only until the
tenth bit. In the worst case, two keys will follow the same path in the tree only until
the tenth branch. As a result, the tree will never be more than ten levels deep. In
contrast, a BST containing n records could be as much as n levels deep.

Decomposition based on a predetermined subdivision of the key range is called
key space decomposition. In computer graphics, a related technique is known as
image space decomposition, and this term is sometimes applied to data structures
based on key space decomposition as well. Any data structure based on key space
decomposition is called a trie. Folklore has it that “trie” comes from “retrieval.”
Unfortunately, that would imply that the word is pronounced “tree,” which would
lead to confusion with regular use of the word “tree.” “Trie” is actually pronounced
as “try.”

Like the B+-tree, a trie stores data records only in leaf nodes. Internal nodes
serve as placeholders to direct the search process. Figure 13.1 illustrates the trie
concept. Upper and lower bounds must be imposed on the key values so that we
can compute the middle of the key range. Because the largest value inserted in this
example is 120, a range from 0 to 127 is assumed, as 128 is the smallest power
of two greater than 120. The binary value of the key determines whether to select
the left or right branch at any given point during the search. The most significant
bit determines the branch direction at the root. Figure 13.1 shows a binary trie,
so called because in this example the trie structure is based on the value of the key
interpreted as a binary number, which results in a binary tree.

The Huffman coding tree of Section 5.6 is another example of a binary trie. All
data values in the Huffman tree are at the leaves, and each branch splits the range
of possible letter codes in half. The Huffman codes are actually derived from the
letter positions within the trie.

These are examples of binary tries, but tries can be built with any branching
factor. Normally the branching factor is determined by the alphabet used. For

Sec. 13.1 Tries 449

0

0

0

2 7

1
24

1

1

1

120
0

0 1

1

32

0

0 1

40 42

37

0

0

0

Figure 13.1 The binary trie for the collection of values 2, 7, 24, 31, 37, 40, 42,
120. All data values are stored in the leaf nodes. Edges are labeled with the value
of the bit used to determine the branching direction of each node. The binary
form of the key value determines the path to the record, assuming that each key is
represented as a 7-bit value representing a number in the range 0 to 127.

binary numbers, the alphabet is {0, 1} and a binary trie results. Other alphabets
lead to other branching factors.

One application for tries is storing a dictionary of words. Such a trie will be
referred to as an alphabet trie. For simplicity, our examples will ignore case in
letters. We add a special character ($) to the 26 standard English letters. The $
character is used to represent the end of a string. Thus, the branching factor for
each node is (up to) 27. Once constructed, the alphabet trie is used to determine
if a given word is in the dictionary. Consider searching for a word in the alphabet
trie of Figure 13.2. The first letter of the search word determines which branch
to take from the root, the second letter determines which branch to take at the
next level, and so on. Only the letters that lead to a word are shown as branches.
In Figure 13.2(b) the leaf nodes of the trie store a copy of the actual words, while
in Figure 13.2(a) the word is built up from the letters associated with each branch.

One way to implement a node of the alphabet trie is as an array of 27 pointers
indexed by letter. Because most nodes have branches to only a small fraction of the
possible letters in the alphabet, an alternate implementation is to use a linked list of
pointers to the child nodes, as in Figure 6.9.

The depth of a leaf node in the alphabet trie of Figure 13.2(b) has little to do
with the number of nodes in the trie. Rather, a node’s depth depends on the number
of characters required to distinguish this node’s word from any other. For example,
if the words “anteater” and “antelope” are both stored in the trie, it is not until the
fifth letter that the two words can be distinguished. Thus, these words must be
stored at least as deep as level five. In general, the limiting factor on the depth of
nodes in the alphabet trie is the length of the words stored.

450 Chap. 13 Advanced Tree Structures

e

l

u

o

(b)

ant

e

l

chicken

d

u

deer duck

g h

l o

horse

goosegoldfishgoat

antelope

(a)

n

t

$

a

t

e

r

$

o

p

e

$

c

h

i

c

k

n

$

e

r

$

c

k

$

g

o

a

$

l

d

f

i

s

h

$

r

s

e

a d

t

o

h

$

e

e

s

e

$

a

n

t

$

a

c

e o

a

anteater

Figure 13.2 Two variations on the alphabet trie representation for a set of ten
words. (a) Each node contains a set of links corresponding to single letters, and
each letter in the set of words has a corresponding link. “$” is used to indicate
the end of a word. Internal nodes direct the search and also spell out the word
one letter per link. The word need not be stored explicitly. “$” is needed to
recognize the existence of words that are prefixes to other words, such as ‘ant’ in
this example. (b) Here the trie extends only far enough to discriminate between the
words. Leaf nodes of the trie each store a complete word; internal nodes merely
direct the search.

Sec. 13.1 Tries 451

1xxxxxx
0

120
01xxxxx00xxxxx

2 3
0101xxx

4 24 4 5
010101x

2 7 32 37 40 42

000xxxx

0xxxxxx

1

Figure 13.3 The PAT trie for the collection of values 2, 7, 24, 32, 37, 40, 42,
120. Contrast this with the binary trie of Figure 13.1. In the PAT trie, all data
values are stored in the leaf nodes, while internal nodes store the bit position used
to determine the branching decision, assuming that each key is represented as a 7-
bit value representing a number in the range 0 to 127. Some of the branches in this
PAT trie have been labeled to indicate the binary representation for all values in
that subtree. For example, all values in the left subtree of the node labeled 0 must
have value 0xxxxxx (where x means that bit can be either a 0 or a 1). All nodes in
the right subtree of the node labeled 3 must have value 0101xxx. However, we can
skip branching on bit 2 for this subtree because all values currently stored have a
value of 0 for that bit.

Poor balance and clumping can result when certain prefixes are heavily used.
For example, an alphabet trie storing the common words in the English language
would have many words in the “th” branch of the tree, but none in the “zq” branch.

Any multiway branching trie can be replaced with a binary trie by replacing the
original trie’s alphabet with an equivalent binary code. Alternatively, we can use
the techniques of Section 6.3.4 for converting a general tree to a binary tree without
modifying the alphabet.

The trie implementations illustrated by Figures 13.1 and 13.2 are potentially
quite inefficient as certain key sets might lead to a large number of nodes with only
a single child. A variant on trie implementation is known as PATRICIA, which
stands for “Practical Algorithm To Retrieve Information Coded In Alphanumeric.”
In the case of a binary alphabet, a PATRICIA trie (referred to hereafter as a PAT
trie) is a full binary tree that stores data records in the leaf nodes. Internal nodes
store only the position within the key’s bit pattern that is used to decide on the next
branching point. In this way, internal nodes with single children (equivalently, bit
positions within the key that do not distinguish any of the keys within the current
subtree) are eliminated. A PAT trie corresponding to the values of Figure 13.1 is
shown in Figure 13.3.

452 Chap. 13 Advanced Tree Structures

Example 13.1 When searching for the value 7 (0000111 in binary) in
the PAT trie of Figure 13.3, the root node indicates that bit position 0 (the
leftmost bit) is checked first. Because the 0th bit for value 7 is 0, take the
left branch. At level 1, branch depending on the value of bit 1, which again
is 0. At level 2, branch depending on the value of bit 2, which again is 0. At
level 3, the index stored in the node is 4. This means that bit 4 of the key is
checked next. (The value of bit 3 is irrelevant, because all values stored in
that subtree have the same value at bit position 3.) Thus, the single branch
that extends from the equivalent node in Figure 13.1 is just skipped. For
key value 7, bit 4 has value 1, so the rightmost branch is taken. Because
this leads to a leaf node, the search key is compared against the key stored
in that node. If they match, then the desired record has been found.

Note that during the search process, only a single bit of the search key is com-
pared at each internal node. This is significant, because the search key could be
quite large. Search in the PAT trie requires only a single full-key comparison,
which takes place once a leaf node has been reached.

Example 13.2 Consider the situation where we need to store a library of
DNA sequences. A DNA sequence is a series of letters, usually many thou-
sands of characters long, with the string coming from an alphabet of only
four letters that stand for the four amino acids making up a DNA strand.
Similar DNA seqences might have long sections of ther string that are iden-
tical. The PAT trie woudl avoid making multiple full key comparisons when
searching for a specific sequence.

13.2 Balanced Trees

We have noted several times that the BST has a high risk of becoming unbalanced,
resulting in excessively expensive search and update operations. One solution to
this problem is to adopt another search tree structure such as the 2-3 tree. An al-
ternative is to modify the BST access functions in some way to guarantee that the
tree performs well. This is an appealing concept, and it works well for heaps,
whose access functions maintain the heap in the shape of a complete binary tree.
Unfortunately, requiring that the BST always be in the shape of a complete binary
tree requires excessive modification to the tree during update, as discussed in Sec-
tion 10.3.

Sec. 13.2 Balanced Trees 453

If we are willing to weaken the balance requirements, we can come up with
alternative update routines that perform well both in terms of cost for the update
and in balence for the resulting tree structure. The AVL tree works in this way,
using insertion and deletion routines altered from those of the BST to ensure that,
for every node, the depths of the left and right subtrees differ by at most one. The
AVL tree is described in Section 13.2.1.

A different approach to improving the performance of the BST is to not require
that the tree always be balanced, but rather to expend some effort toward making
the BST more balanced every time it is accessed. This is a little like the idea of path
compression used by the UNION/FIND algorithm presented in Section 6.2. One
example of such a compromise is called the splay tree. The splay tree is described
in Section 13.2.2.

13.2.1 The AVL Tree

The AVL tree (named for its inventors Adelson-Velskii and Landis) should be
viewed as a BST with the following additional property: For every node, the heights
of its left and right subtrees differ by at most 1. As long as the tree maintains this
property, if the tree contains n nodes, then it has a depth of at most O(log n). As
a result, search for any node will cost O(log n), and if the updates can be done in
time proportional to the depth of the node inserted or deleted, then updates will also
cost O(log n), even in the worst case.

The key to making the AVL tree work is to make the proper alterations to the
insert and delete routines so as to maintain the balance property. Of course, to be
practical, we must be able to implement the revised update routines in Θ(log n)
time.

Consider what happens when we insert a node with key value 5, as shown in
Figure 13.4. The tree on the left meets the AVL tree balance requirements. After
the insertion, two nodes no longer meet the requirements. Because the original tree
met the balance requirement, nodes in the new tree can only be unbalanced by a
difference of at most 2 in the subtrees. For the bottommost unbalanced node, call
it S, there are 4 cases:

1. The extra node is in the left child of the left child of S.
2. The extra node is in the right child of the left child of S.
3. The extra node is in the left child of the right child of S.
4. The extra node is in the right child of the right child of S.

Cases 1 and 4 are symmetrical, as are cases 2 and 3. Note also that the unbalanced
nodes must be on the path from the root to the newly inserted node.

454 Chap. 13 Advanced Tree Structures

7

2

32

42

40

120

37

42

24

7

2

32

42

40

120

37

42

24

5
Figure 13.4 Example of an insert operation that violates the AVL tree balance
property. Prior to the insert operation, all nodes of the tree are balanced (i.e., the
depths of the left and right subtrees for every node differ by at most one). After
inserting the node with value 5, the nodes with values 7 and 24 are no longer
balanced.

S

X C

X

S

B B C
A

(a)

A

(b)

Figure 13.5 A single rotation in an AVL tree. This operation occurs when the
excess node (in subtree A) is in the left child of the left child of the unbalanced
node labeled S. By rearranging the nodes as shown, we preserve the BST property,
as well as rebalance the tree to preserve the AVL tree balance property. The case
where the excess node is in the right child of the right child of the unbalanced
node is handled in the same way.

Our problem now is how to balance the tree in O(log n) time. It turns out that
we can do this using a series of local operations known as rotations. Cases 1 and
4 can be fixed using a single rotation, as shown in Figure 13.5. Cases 2 and 3 can
be fixed using a double rotation, as shown in Figure 13.6.

The AVL tree insert algorithm begins with a normal BST insert. Then as the re-
cursion unwinds up the tree, we perform the appropriate rotation on any node that is

Sec. 13.2 Balanced Trees 455

Y

S

Y

X

A
B

S

C
D

X

C

A

(a)

B

D

(b)

Figure 13.6 A double rotation in an AVL tree. This operation occurs when the
excess node (in subtree B) is in the right child of the left child of the unbalanced
node labeled S. By rearranging the nodes as shown, we preserve the BST property,
as well as rebalance the tree to preserve the AVL tree balance property. The case
where the excess node is in the left child of the right child of S is handled in the
same way.

found to be unbalanced. Deletion is similar; however consideration for unbalanced
nodes must begin at the level of the deletemin operation.

Example 13.3 In Figure 13.4 (b), the bottom-most unbalanced node has
value 7. The excess node (with value 5) is in the right subtree of the left
child of 7, so we have an example of Case 2. This requires a double rotation
to fix. After the rotation, 5 becomes the left child of 24, 2 becomes the left
child of 5, and 7 becomes the right child of 5.

13.2.2 The Splay Tree

Like the AVL tree, the splay tree is not actually a data structure per se but rather is
a collection of rules for improving the performance of a BST. These rules govern
modifications made to the BST whenever a search, insert, or delete operation is
performed. Their purpose is to provide guarantees on the time required by a se-
ries of operations, thereby avoiding the worst-case linear time behavior of standard
BST operations. No single operation in the splay tree is guaranteed to be efficient.
Instead, the splay tree access rules guarantee that a series of m operations will take

456 Chap. 13 Advanced Tree Structures

O(m log n) time for a tree of n nodes whenever m ≥ n. Thus, a single insert or
search operation could take O(n) time. However,m such operations are guaranteed
to require a total of O(m log n) time, for an average cost of O(log n) per access
operation. This is a desirable performance guarantee for any search-tree structure.

Unlike the AVL tree, the splay tree is not guaranteed to be height balanced.
What is guaranteed is that the total cost of the entire series of accesses will be
cheap. Ultimately, it is the cost of the series of operations that matters, not whether
the tree is balanced. Maintaining balance is really done only for the sake of reaching
this time efficiency goal.

The splay tree access functions operate in a manner reminiscent of the move-
to-front rule for self-organizing lists from Section 9.2, and of the path compres-
sion technique for managing parent-pointer trees from Section 6.2. These access
functions tend to make the tree more balanced, but an individual access will not
necessarily result in a more balanced tree.

Whenever a node S is accessed (e.g., when S is inserted, deleted, or is the goal
of a search), the splay tree performs a process called splaying. Splaying moves S
to the root of the BST. When S is being deleted, splaying moves the parent of S to
the root. As in the AVL tree, a splay of node S consists of a series of rotations.
A rotation moves S higher in the tree by adjusting its position with respect to its
parent and grandparent. A side effect of the rotations is a tendency to balance the
tree. There are three types of rotation.

A single rotation is performed only if S is a child of the root node. The single
rotation is illustrated by Figure 13.7. It basically switches S with its parent in a
way that retains the BST property. While Figure 13.7 is slightly different from
Figure 13.5, in fact the splay tree single rotation is identical to the AVL tree single
rotation.

Unlike the AVL tree, the splay tree requires two types of double rotation. Dou-
ble rotations involve S, its parent (call it P), and S’s grandparent (call it G). The
effect of a double rotation is to move S up two levels in the tree.

The first double rotation is called a zigzag rotation. It takes place when either
of the following two conditions are met:

1. S is the left child of P, and P is the right child of G.
2. S is the right child of P, and P is the left child of G.

In other words, a zigzag rotation is used when G, P, and S form a zigzag. The
zigzag rotation is illustrated by Figure 13.8.

The other double rotation is known as a zigzig rotation. A zigzig rotation takes
place when either of the following two conditions are met:

Sec. 13.2 Balanced Trees 457

P

S

(a)

C

S

A P

A B B C

(b)

Figure 13.7 Splay tree single rotation. This rotation takes place only when
the node being splayed is a child of the root. Here, node S is promoted to the
root, rotating with node P. Because the value of S is less than the value of P,
P must become S’s right child. The positions of subtrees A, B, and C are altered
as appropriate to maintain the BST property, but the contents of these subtrees
remains unchanged. (a) The original tree with P as the parent. (b) The tree after
a rotation takes place. Performing a single rotation a second time will return the
tree to its original shape. Equivalently, if (b) is the initial configuration of the tree
(i.e., S is at the root and P is its right child), then (a) shows the result of a single
rotation to splay P to the root.

(a) (b)

S

G

S

P

A B

G

C

P

C

D

A

B D

Figure 13.8 Splay tree zigzag rotation. (a) The original tree with S, P, and G
in zigzag formation. (b) The tree after the rotation takes place. The positions of
subtrees A, B, C, and D are altered as appropriate to maintain the BST property.

458 Chap. 13 Advanced Tree Structures

(a)

S

(b)

C D

B

G

BA

C

S

A P

G

DP

Figure 13.9 Splay tree zigzig rotation. (a) The original tree with S, P, and G
in zigzig formation. (b) The tree after the rotation takes place. The positions of
subtrees A, B, C, and D are altered as appropriate to maintain the BST property.

1. S is the left child of P, which is in turn the left child of G.
2. S is the right child of P, which is in turn the right child of G.

Thus, a zigzig rotation takes place in those situations where a zigzag rotation is not
appropriate. The zigzig rotation is illustrated by Figure 13.9. While Figure 13.9
appears somewhat different from Figure 13.6, in fact the zigzig rotation is identical
to the AVL tree double rotation.

Note that zigzag rotations tend to make the tree more balanced, because they
bring subtrees B and C up one level while moving subtree D down one level. The
result is often a reduction of the tree’s height by one. Zigzig promotions do not
typically reduce the height of the tree; they merely bring the newly accessed record
toward the root.

Splaying node S involves a series of double rotations until S reaches either the
root or the child of the root. Then, if necessary, a single rotation makes S the
root. This process tends to rebalance the tree. In any case, it will make frequently
accessed nodes stay near the top of the tree, resulting in reduced access cost. Proof
that the splay tree does in fact meet the guarantee of O(m log n) is beyond the scope
of this book. Such a proof can be found in the references in Section 13.4.

Example 13.4 Consider a search for value 89 in the splay tree of Fig-
ure 13.10(a). The splay tree’s search operation is identical to searching in
a BST. However, once the value has been found, it is splayed to the root.
Three rotations are required in this example. The first is a zigzig rotation,

Sec. 13.3 Spatial Data Structures 459

whose result is shown in Figure 13.10(b). The second is a zigzag rotation,
whose result is shown in Figure 13.10(c). The final step is a single rotation
resulting in the tree of Figure 13.10(d). Notice that the splaying process has
made the tree shallower.

13.3 Spatial Data Structures

All of the search trees discussed so far — BSTs, AVL trees, splay trees, 2-3 trees,
B-trees, and tries — are designed for searching on a one-dimensional key. A typical
example is an integer key, whose one-dimensional range can be visualized as a
number line. These various tree structures can be viewed as dividing this one-
dimensional numberline into pieces.

Some databases require support for multiple keys, that is, records can be searched
based on any one of several keys. Typically, each such key has its own one-
dimensional index, and any given search query searches one of these independent
indices as appropriate.

A multidimensional search key presents a rather different concept. Imagine
that we have a database of city records, where each city has a name and an xy-
coordinate. A BST or splay tree provides good performance for searches on city
name, which is a one-dimensional key. Separate BSTs could be used to index the x-
and y-coordinates. This would allow us to insert and delete cities, and locate them
by name or by one coordinate. However, search on one of the two coordinates is
not a natural way to view search in a two-dimensional space. Another option is to
combine the xy-coordinates into a single key, say by concatenating the two coor-
dinates, and index cities by the resulting key in a BST. That would allow search by
coordinate, but would not allow for efficient two-dimensional range queries such
as searching for all cities within a given distance of a specified point. The problem
is that the BST only works well for one-dimensional keys, while a coordinate is a
two-dimensional key where neither dimension is more important than the other.

Multidimensional range queries are the defining feature of a spatial applica-
tion. Because a coordinate gives a position in space, it is called a spatial attribute.
To implement spatial applications efficiently requires the use of spatial data struc-
tures. Spatial data structures store data objects organized by position and are an
important class of data structures used in geographic information systems, com-
puter graphics, robotics, and many other fields.

This section presents two spatial data structures for storing point data in two or
more dimensions. They are the k-d tree and the PR quadtree. The k-d tree is a

460 Chap. 13 Advanced Tree Structures

S

25

42

99

G

P

S

75

17

G

99

18

72

42 75

(a) (b)

18

72

89

(c) (d)

17 P

S

25

18 72

42

89

92

18 72

42 75

99

89 17

2592

99

75

92

25

89

P

17

92

Figure 13.10 Example of splaying after performing a search in a splay tree.
After finding the node with key value 89, that node is splayed to the root by per-
forming three rotations. (a) The original splay tree. (b) The result of performing
a zigzig rotation on the node with key value 89 in the tree of (a). (c) The result
of performing a zigzag rotation on the node with key value 89 in the tree of (b).
(d) The result of performing a single rotation on the node with key value 89 in the
tree of (c). If the search had been for 91, the search would have been unsuccessful
with the node storing key value 89 being that last one visited. In that case, the
same splay operations would take place.

Sec. 13.3 Spatial Data Structures 461

natural extension of the BST to multiple dimensions. It is a binary tree whose split-
ting decisions alternate among the key dimensions. Like the BST, the k-d tree uses
object space decomposition. The PR quadtree uses key space decomposition and so
is a form of trie. It is a binary tree only for one-dimensional keys (in which case it
is a trie with a binary alphabet). For d dimensions it has 2d branches. Thus, in two
dimensions, the PR quadtree has four branches (hence the name “quadtree”), split-
ting space into four equal-sized quadrants at each branch. Section 13.3.3 briefly
mentions two other variations on these data structures, the bintree and the point
quadtree. These four structures cover all four combinations of object versus key
space decomposition on the one hand, and multi-level binary versus 2d-way branch-
ing on the other. Section 13.3.4 briefly discusses spatial data structures for storing
other types of spatial data.

13.3.1 The K-D Tree

The k-d tree is a modification to the BST that allows for efficient processing of
multidimensional keys. The k-d tree differs from the BST in that each level of
the k-d tree makes branching decisions based on a particular search key associated
with that level, called the discriminator. We define the discriminator at level i to
be i mod k for k dimensions. For example, assume that we store data organized
by xy-coordinates. In this case, k is 2 (there are two coordinates), with the x-
coordinate field arbitrarily designated key 0, and the y-coordinate field designated
key 1. At each level, the discriminator alternates between x and y. Thus, a node N
at level 0 (the root) would have in its left subtree only nodes whose x values are less
than Nx (because x is search key 0, and 0 mod 2 = 0). The right subtree would
contain nodes whose x values are greater than Nx. A node M at level 1 would
have in its left subtree only nodes whose y values are less than My. There is no
restriction on the relative values of Mx and the x values of M’s descendants, because
branching decisions made at M are based solely on the y coordinate. Figure 13.11
shows an example of how a collection of two-dimensional points would be stored
in a k-d tree.

In Figure 13.11 the region containing the points is (arbitrarily) restricted to a
128 × 128 square, and each internal node splits the search space. Each split is
shown by a line, vertical for nodes with x discriminators and horizontal for nodes
with y discriminators. The root node splits the space into two parts; its children
further subdivide the space into smaller parts. The children’s split lines do not
cross the root’s split line. Thus, each node in the k-d tree helps to decompose the
space into rectangles that show the extent of where nodes can fall in the various
subtrees.

462 Chap. 13 Advanced Tree Structures

B

A D

C

(a)

E

x

y

y

x
B (15, 70)

A (40, 45)

C (70, 10)

D (69, 50)

F (85, 90)

(b)

E (66, 85)F

Figure 13.11 Example of a k-d tree. (a) The k-d tree decomposition for a 128×
128-unit region containing seven data points. (b) The k-d tree for the region of
(a).

Searching a k-d tree for the record with a specified xy-coordinate is like search-
ing a BST, except that each level of the k-d tree is associated with a particular dis-
criminator.

Example 13.5 Consider searching the k-d tree for a record located at P =
(69, 50). First compare P with the point stored at the root (record A in
Figure 13.11). If P matches the location of A, then the search is successful.
In this example the positions do not match (A’s location (40, 45) is not
the same as (69, 50)), so the search must continue. The x value of A is
compared with that of P to determine in which direction to branch. Because
Ax’s value of 40 is less than P’s x value of 69, we branch to the right subtree
(all cities with x value greater than or equal to 40 are in the right subtree).
Ay does not affect the decision on which way to branch at this level. At the
second level, P does not match record C’s position, so another branch must
be taken. However, at this level we branch based on the relative y values
of point P and record C (because 1 mod 2 = 1, which corresponds to the
y-coordinate). Because Cy’s value of 10 is less than Py’s value of 50, we
branch to the right. At this point, P is compared against the position of D.
A match is made and the search is successful.

As with a BST, if the search process reaches a null pointer, then the search
point is not contained in the tree. Here is an implementation for k-d tree search,

Sec. 13.3 Spatial Data Structures 463

equivalent to the findhelp function of the BST class. Note that KD class private
member D stores the key’s dimension.

private E findhelp(KDNode<E> rt, int[] key, int level) {
if (rt == null) return null;
E it = rt.element();
int[] itkey = rt.key();
if ((itkey[0] == key[0]) && (itkey[1] == key[1]))

return rt.element();
if (itkey[level] > key[level])

return findhelp(rt.left(), key, (level+1)%D);
else

return findhelp(rt.right(), key, (level+1)%D);
}

Inserting a new node into the k-d tree is similar to BST insertion. The k-d tree
search procedure is followed until a null pointer is found, indicating the proper
place to insert the new node.

Example 13.6 Inserting a record at location (10, 50) in the k-d tree of
Figure 13.11 first requires a search to the node containing record B. At this
point, the new record is inserted into B’s left subtree.

Deleting a node from a k-d tree is similar to deleting from a BST, but slightly
harder. As with deleting from a BST, the first step is to find the node (call it N)
to be deleted. It is then necessary to find a descendant of N which can be used to
replace N in the tree. If N has no children, then N is replaced with a null pointer.
Note that if N has one child that in turn has children, we cannot simply assign N’s
parent to point to N’s child as would be done in the BST. To do so would change the
level of all nodes in the subtree, and thus the discriminator used for a search would
also change. The result is that the subtree would no longer be a k-d tree because a
node’s children might now violate the BST property for that discriminator.

Similar to BST deletion, the record stored in N should be replaced either by the
record in N’s right subtree with the least value of N’s discriminator, or by the record
in N’s left subtree with the greatest value for this discriminator. Assume that N was
at an odd level and therefore y is the discriminator. N could then be replaced by the
record in its right subtree with the least y value (call it Ymin). The problem is that
Ymin is not necessarily the leftmost node, as it would be in the BST. A modified
search procedure to find the least y value in the left subtree must be used to find it
instead. The implementation for findmin is shown in Figure 13.12. A recursive
call to the delete routine will then remove Ymin from the tree. Finally, Ymin’s record
is substituted for the record in node N.

464 Chap. 13 Advanced Tree Structures

private KDNode<E>
findmin(KDNode<E> rt, int descrim, int level) {

KDNode<E> temp1, temp2;
int[] key1 = null;
int[] key2 = null;
if (rt == null) return null;
temp1 = findmin(rt.left(), descrim, (level+1)%D);
if (temp1 != null) key1 = temp1.key();
if (descrim != level) {

temp2 = findmin(rt.right(), descrim, (level+1)%D);
if (temp2 != null) key2 = temp2.key();
if ((temp1 == null) || ((temp2 != null) &&

(key1[descrim] > key2[descrim])))
temp1 = temp2;
key1 = key2;

} // Now, temp1 has the smaller value
int[] rtkey = rt.key();
if ((temp1 == null) || (key1[descrim] > rtkey[descrim]))

return rt;
else

return temp1;
}

Figure 13.12 The k-d tree findmin method. On levels using the minimum
value’s discriminator, branching is to the left. On other levels, both children’s
subtrees must be visited. Helper function min takes two nodes and a discriminator
as input, and returns the node with the smaller value in that discriminator.
Note that we can replace the node to be deleted with the least-valued node

from the right subtree only if the right subtree exists. If it does not, then a suitable
replacement must be found in the left subtree. Unfortunately, it is not satisfactory
to replace N’s record with the record having the greatest value for the discriminator
in the left subtree, because this new value might be duplicated. If so, then we
would have equal values for the discriminator in N’s left subtree, which violates
the ordering rules for the k-d tree. Fortunately, there is a simple solution to the
problem. We first move the left subtree of node N to become the right subtree (i.e.,
we simply swap the values of N’s left and right child pointers). At this point, we
proceed with the normal deletion process, replacing the record of N to be deleted
with the record containing the least value of the discriminator from what is now
N’s right subtree.

Assume that we want to print out a list of all records that are within a certain
distance d of a given point P. We will use Euclidean distance, that is, point P is
defined to be within distance d of point N if1√

(Px − Nx)2 + (Py − Ny)2 ≤ d.
1A more efficient computation is (Px − Nx)2 + (Py − Ny)2 ≤ d2. This avoids performing a

square root function.

Sec. 13.3 Spatial Data Structures 465

A

C

Figure 13.13 Function InCircle must check the Euclidean distance between
a record and the query point. It is possible for a record A to have x- and y-
coordinates each within the query distance of the query point C, yet have A itself
lie outside the query circle.

If the search process reaches a node whose key value for the discriminator is
more than d above the corresponding value in the search key, then it is not possible
that any record in the right subtree can be within distance d of the search key be-
cause all key values in that dimension are always too great. Similarly, if the current
node’s key value in the discriminator is d less than that for the search key value,
then no record in the left subtree can be within the radius. In such cases, the sub-
tree in question need not be searched, potentially saving much time. In the average
case, the number of nodes that must be visited during a range query is linear on the
number of data records that fall within the query circle.

Example 13.7 Find all cities in the k-d tree of Figure 13.14 within 25 units
of the point (25, 65). The search begins with the root node, which contains
record A. Because (40, 45) is exactly 25 units from the search point, it will
be reported. The search procedure then determines which branches of the
tree to take. The search circle extends to both the left and the right of A’s
(vertical) dividing line, so both branches of the tree must be searched. The
left subtree is processed first. Here, record B is checked and found to fall
within the search circle. Because the node storing B has no children, pro-
cessing of the left subtree is complete. Processing of A’s right subtree now
begins. The coordinates of record C are checked and found not to fall within
the circle. Thus, it should not be reported. However, it is possible that cities
within C’s subtrees could fall within the search circle even if C does not.
As C is at level 1, the discriminator at this level is the y-coordinate. Be-
cause 65 − 25 > 10, no record in C’s left subtree (i.e., records above C)
could possibly be in the search circle. Thus, C’s left subtree (if it had one)
need not be searched. However, cities in C’s right subtree could fall within

466 Chap. 13 Advanced Tree Structures

B

A D

C

E
F

Figure 13.14 Searching in the k-d treeof Figure 13.11. (a) The k-d tree decom-
position for a 128×128-unit region containing seven data points. (b) The k-d tree
for the region of (a).

the circle. Thus, search proceeds to the node containing record D. Again,
D is outside the search circle. Because 25 + 25 < 69, no record in D’s
right subtree could be within the search circle. Thus, only D’s left subtree
need be searched. This leads to comparing record E’s coordinates against
the search circle. Record E falls outside the search circle, and processing
is complete. So we see that we only search subtrees whose rectangles fall
within the search circle.

Figure 13.15 shows an implementation for the region search method. When
a node is visited, function InCircle is used to check the Euclidean distance
between the node’s record and the query point. It is not enough to simply check
that the differences between the x- and y-coordinates are each less than the query
distances because the the record could still be outside the search circle, as illustrated
by Figure 13.13.

13.3.2 The PR quadtree

In the Point-Region Quadtree (hereafter referred to as the PR quadtree) each node
either has exactly four children or is a leaf. That is, the PR quadtree is a full four-
way branching (4-ary) tree in shape. The PR quadtree represents a collection of
data points in two dimensions by decomposing the region containing the data points
into four equal quadrants, subquadrants, and so on, until no leaf node contains more
than a single point. In other words, if a region contains zero or one data points, then
it is represented by a PR quadtree consisting of a single leaf node. If the region con-

Sec. 13.3 Spatial Data Structures 467

private void rshelp(KDNode<E> rt, int[] point,
int radius, int lev) {

if (rt == null) return;
int[] rtkey = rt.key();
if (InCircle(point, radius, rtkey))

System.out.println(rt.element());
if (rtkey[lev] > (point[lev] - radius))

rshelp(rt.left(), point, radius, (lev+1)%D);
if (rtkey[lev] < (point[lev] + radius))

rshelp(rt.right(), point, radius, (lev+1)%D);
}

Figure 13.15 The k-d tree region search method.

tains more than a single data point, then the region is split into four equal quadrants.
The corresponding PR quadtree then contains an internal node and four subtrees,
each subtree representing a single quadrant of the region, which might in turn be
split into subquadrants. Each internal node of a PR quadtree represents a single
split of the two-dimensional region. The four quadrants of the region (or equiva-
lently, the corresponding subtrees) are designated (in order) NW, NE, SW, and SE.
Each quadrant containing more than a single point would in turn be recursively di-
vided into subquadrants until each leaf of the corresponding PR quadtree contains
at most one point.

For example, consider the region of Figure 13.16(a) and the corresponding
PR quadtree in Figure 13.16(b). The decomposition process demands a fixed key
range. In this example, the region is assumed to be of size 128× 128. Note that the
internal nodes of the PR quadtree are used solely to indicate decomposition of the
region; internal nodes do not store data records. Because the decomposition lines
are predetermined (i.e, key-space decomposition is used), the PR quadtree is a trie.

Search for a record matching point Q in the PR quadtree is straightforward.
Beginning at the root, we continuously branch to the quadrant that contains Q until
our search reaches a leaf node. If the root is a leaf, then just check to see if the
node’s data record matches point Q. If the root is an internal node, proceed to
the child that contains the search coordinate. For example, the NW quadrant of
Figure 13.16 contains points whose x and y values each fall in the range 0 to 63.
The NE quadrant contains points whose x value falls in the range 64 to 127, and
whose y value falls in the range 0 to 63. If the root’s child is a leaf node, then that
child is checked to see if Q has been found. If the child is another internal node, the
search process continues through the tree until a leaf node is found. If this leaf node
stores a record whose position matches Q then the query is successful; otherwise Q
is not in the tree.

468 Chap. 13 Advanced Tree Structures

(a)

0
0

127

127

A

D

C

B

E
F

(b)

nw

(40,45)

A

C

(69,50)(70, 10)

ne sw
B

se

(15,70)

(55,80) (80, 90)

E F

D

Figure 13.16 Example of a PR quadtree. (a) A map of data points. We de-
fine the region to be square with origin at the upper-left-hand corner and sides of
length 128. (b) The PR quadtree for the points in (a). (a) also shows the block
decomposition imposed by the PR quadtree for this region.

Inserting record P into the PR quadtree is performed by first locating the leaf
node that contains the location of P. If this leaf node is empty, then P is stored
at this leaf. If the leaf already contains P (or a record with P’s coordinates), then
a duplicate record should be reported. If the leaf node already contains another
record, then the node must be repeatedly decomposed until the existing record and
P fall into different leaf nodes. Figure 13.17 shows an example of such an insertion.

Deleting a record P is performed by first locating the node N of the PR quadtree
that contains P. Node N is then changed to be empty. The next step is to look at N’s
three siblings. N and its siblings must be merged together to form a single node N ′

if only one point is contained among them. This merging process continues until
some level is reached at which at least two points are contained in the subtrees rep-
resented by node N ′ and its siblings. For example, if point C is to be deleted from
the PR quadtree representing Figure 13.17(b), the resulting node must be merged
with its siblings, and that larger node again merged with its siblings to restore the
PR quadtree to the decomposition of Figure 13.17(a).

Region search is easily performed with the PR quadtree. To locate all points
within radius r of query point Q, begin at the root. If the root is an empty leaf node,
then no data points are found. If the root is a leaf containing a data record, then the
location of the data point is examined to determine if it falls within the circle. If
the root is an internal node, then the process is performed recursively, but only on
those subtrees containing some part of the search circle.

Sec. 13.3 Spatial Data Structures 469

C

A

B

(a) (b)

B

A

Figure 13.17 PR quadtree insertion example. (a) The initial PR quadtree con-
taining two data points. (b) The result of inserting point C. The block contain-
ing A must be decomposed into four subblocks. Points A and C would still be in
the same block if only one subdivision takes place, so a second decomposition is
required to separate them.

Let us now consider how structure of the PR quadtree affects the design of its
node representation. The PR quadtree is actually a trie (as defined in Section 13.1).
Decomposition takes place at the mid-points for internal nodes, regardless of where
the data points actually fall. The placement of the data points does determine
whether a decomposition for a node takes place, but not where the decomposi-
tion for the node takes place. Internal nodes of the PR quadtree are quite different
from leaf nodes, in that internal nodes have children (leaf nodes do not) and leaf
nodes have data fields (internal nodes do not). Thus, it is likely to be beneficial to
represent internal nodes differently from leaf nodes. Finally, there is the fact that
approximately half of the leaf nodes will contain no data field.

Another issue to consider is: How does a routine traversing the PR quadtree
get the coordinates for the square represented by the current PR quadtree node?
One possibility is to store with each node its spatial description (such as upper-left
corner and width). However, this will take a lot of space — perhaps as much as the
space needed for the data records, depending on what information is being stored.

Another possibility is to pass in the coordinates when the recursive call is made.
For example, consider the search process. Initially, the search visits the root node
of the tree, which has origin at (0, 0), and whose width is the full size of the space
being covered. When the appropriate child is visited, it is a simple matter for the
search routine to determine the origin for the child, and the width of the square is
simply half that of the parent. Not only does passing in the size and position infor-

470 Chap. 13 Advanced Tree Structures

mation for a node save considerable space, but avoiding storing such information
in the nodes we enables a good design choice for empty leaf nodes, as discussed
next.

How should we represent empty leaf nodes? On average, half of the leaf nodes
in a PR quadtree are empty (i.e., do not store a data point). One implementation
option is to use a null pointer in internal nodes to represent empty nodes. This
will solve the problem of excessive space requirements. There is an unfortunate
side effect that using a null pointer requires the PR quadtree processing meth-
ods to understand this convention. In other words, you are breaking encapsulation
on the node representation because the tree now must know things about how the
nodes are implemented. This is not too horrible for this particular application, be-
cause the node class can be considered private to the tree class, in which case the
node implementation is completely invisible to the outside world. However, it is
undesirable if there is another reasonable alternative.

Fortunately, there is a good alternative. It is called the Flyweight design pattern.
In the PR quadtree, a flyweight is a single empty leaf node that is reused in all places
where an empty leaf node is needed. You simply have all of the internal nodes with
empty leaf children point to the same node object. This node object is created once
at the beginning of the program, and is never removed. The node class recognizes
from the pointer value that the flyweight is being accessed, and acts accordingly.

Note that when using the Flyweight design pattern, you cannot store coordi-
nates for the node in the node. This is an example of the concept of intrinsic versus
extrinsic state. Intrinsic state for an object is state information stored in the ob-
ject. If you stored the coordinates for a node in the node object, those coordinates
would be intrinsic state. Extrinsic state is state information about an object stored
elsewhere in the environment, such as in global variables or passed to the method.
If your recursive calls that process the tree pass in the coordinates for the current
node, then the coordinates will be extrinsic state. A flyweight can have in its intrin-
sic state only information that is accurate for all instances of the flyweight. Clearly
coordinates do not qualify, because each empty leaf node has its own location. So,
if you want to use a flyweight, you must pass in coordinates.

Another design choice is: Who controls the work, the node class or the tree
class? For example, on an insert operation, you could have the tree class control
the flow down the tree, looking at (querying) the nodes to see their type and reacting
accordingly. This is the approach used by the BST implementation in Section 5.4.
An alternate approach is to have the node class do the work. That is, you have an
insert method for the nodes. If the node is internal, it passes the city record to the
appropriate child (recursively). If the node is a flyweight, it replaces itself with a

Sec. 13.3 Spatial Data Structures 471

new leaf node. If the node is a full node, it replaces itself with a subtree. This is an
example of the Composite design pattern, discussed in Section 5.3.1.

13.3.3 Other Point Data Structures

The differences between the k-d tree and the PR quadtree illustrate many of the
design choices encountered when creating spatial data structures. The k-d tree pro-
vides an object space decomposition of the region, while the PR quadtree provides
a key space decomposition (thus, it is a trie). The k-d tree stores records at all
nodes, while the PR quadtree stores records only at the leaf nodes. Finally, the two
trees have different structures. The k-d tree is a binary tree, while the PR quadtree
is a full tree with 2d branches (in the two-dimensional case, 22 = 4). Consider
the extension of this concept to three dimensions. A k-d tree for three dimen-
sions would alternate the discriminator through the x, y, and z dimensions. The
three-dimensional equivalent of the PR quadtree would be a tree with 23 or eight
branches. Such a tree is called an octree.

We can also devise a binary trie based on a key space decomposition in each
dimension, or a quadtree that uses the two-dimensional equivalent to an object
space decomposition. The bintree is a binary trie that uses keyspace decomposition
and alternates discriminators at each level in a manner similar to the k-d tree. The
bintree for the points of Figure 13.11 is shown in Figure 13.18. Alternatively, we
can use a four-way decomposition of space centered on the data points. The tree
resulting from such a decomposition is called a point quadtree. The point quadtree
for the data points of Figure 13.11 is shown in Figure 13.19.

13.3.4 Other Spatial Data Structures

This section has barely scratched the surface of the field of spatial data structures.
By now dozens of distinct spatial data structures have been invented, many with
variations and alternate implementations. Spatial data structures exist for storing
many forms of spatial data other than points. The most important distinctions be-
tween are the tree structure (binary or not, regular decompositions or not) and the
decomposition rule used to decide when the data contained within a region is so
complex that the region must be subdivided.

Perhaps the best known spatial data structure is the “region quadtree” for stor-
ing images where the pixel values tend to be blocky, such as a map of the countries
of the world. The region quadtree uses a four-way regular decomposition scheme
similar to the PR quadtree. The decompostion rule is simply to divide any node
containing pixels of more than one color or value.

472 Chap. 13 Advanced Tree Structures

x

y

A
x

B
y

C D

E F

x

y
E F

DA

B

C

(a) (b)

Figure 13.18 An example of the bintree, a binary tree using key space decom-
position and discriminators rotating among the dimensions. Compare this with
the k-d tree of Figure 13.11 and the PR quadtree of Figure 13.16.

127

0
0 127

(a)

B

A

C

FE

D

(b)

C

nw
swne

se
D

A

B

E F

Figure 13.19 An example of the point quadtree, a 4-ary tree using object space
decomposition. Compare this with the PR quadtree of Figure 13.11.

Sec. 13.4 Further Reading 473

Spatial data structures can also be used to store line object, rectangle object,
or objects of arbitrary shape (such as polygons in two dimensions or polyhedra in
three dimensions). A simple, yet effective, data structure for storing rectangles or
arbitrary polygonal shapes can be derived from the PR quadtree. Pick a threshold
value c, and subdivide any region into four quadrants if it contains more than c
objects. A special case must be dealt with when more than c object intersect.

Some of the most interesting developments in spatial data structures have to
do with adapting them for disk-based applications. However, all such disk-based
implementations boil down to storing the spatial data structure within some variant
on either B-trees or hashing.

13.4 Further Reading

PATRICIA tries and other trie implementations are discussed in Information Re-
trieval: Data Structures & Algorithms, Frakes and Baeza-Yates, eds. [FBY92].

See Knuth [Knu97] for a discussion of the AVL tree. For further reading on
splay trees, see “Self-adjusting Binary Search” by Sleator and Tarjan [ST85].

The world of spatial data structures is rich and rapidly evolving. For a good
introduction, see Foundations of Multidimensional and Metric Data Structures by
Hanan Samet [Sam06]. This is also the best reference for more information on
the PR quadtree. The k-d tree was invented by John Louis Bentley. For further
information on the k-d tree, in addition to [Sam06], see [Ben75]. For information
on using a quadtree to store arbitrary polygonal objects, see [SH92].

For a discussion on the relative space requirements for two-way versus multi-
way branching, see “A Generalized Comparison of Quadtree and Bintree Storage
Requirements” by Shaffer, Juvvadi, and Heath [SJH93].

Closely related to spatial data structures are data structures for storing multidi-
mensional data (which might not necessarily be spatial in nature). A popular data
structure for storing such data is the R-tree, originally proposed by Guttman [Gut84].

13.5 Exercises

13.1 Show the binary trie (as illustrated by Figure 13.1) for the following collec-
tion of values: 42, 12, 100, 10, 50, 31, 7, 11, 99.

13.2 Show the PAT trie (as illustrated by Figure 13.3) for the following collection
of values: 42, 12, 100, 10, 50, 31, 7, 11, 99.

13.3 Write the insertion routine for a binary trie as shown in Figure 13.1.
13.4 Write the deletion routine for a binary trie as shown in Figure 13.1.

474 Chap. 13 Advanced Tree Structures

13.5 (a) Show the result (including appropriate rotations) of inserting the value
39 into the AVL tree on the left in Figure 13.4.

(b) Show the result (including appropriate rotations) of inserting the value
300 into the AVL tree on the left in Figure 13.4.

(c) Show the result (including appropriate rotations) of inserting the value
50 into the AVL tree on the left in Figure 13.4.

(d) Show the result (including appropriate rotations) of inserting the value
1 into the AVL tree on the left in Figure 13.4.

13.6 Show the splay tree that results from searching for value 75 in the splay tree
of Figure 13.10(d).

13.7 Show the splay tree that results from searching for value 18 in the splay tree
of Figure 13.10(d).

13.8 Some applications do not permit storing two records with duplicate key val-
ues. In such a case, an attempt to insert a duplicate-keyed record into a tree
structure such as a splay tree should result in a failure on insert. What is
the appropriate action to take in a splay tree implementation when the insert
routine is called with a duplicate-keyed record?

13.9 Show the result of deleting point A from the k-d tree of Figure 13.11.
13.10 (a) Show the result of building a k-d tree from the following points (in-

serted in the order given). A (20, 20), B (10, 30), C (25, 50), D (35,
25), E (30, 45), F (30, 35), G (55, 40), H (45, 35), I (50, 30).

(b) Show the result of deleting point A from the tree you built in part (a).
13.11 (a) Show the result of deleting F from the PR quadtree of Figure 13.16.

(b) Show the result of deleting records E and F from the PR quadtree of
Figure 13.16.

13.12 (a) Show the result of building a PR quadtree from the following points
(inserted in the order given). Assume the tree is representing a space of
64 by 64 units. A (20, 20), B (10, 30), C (25, 50), D (35, 25), E (30,
45), F (30, 35), G (45, 25), H (45, 30), I (50, 30).

(b) Show the result of deleting point C from the tree you built in part (a).
(c) Show the result of deleting point F from the resulting tree in part (b).

13.13 On average, how many leaf nodes of a PR quadtree will typically be empty?
Explain why.

13.14 When performing a region search on a PR quadtree, we need only search
those subtrees of an internal node whose corresponding square falls within
the query circle. This is most easily computed by comparing the x and y
ranges of the query circle against the x and y ranges of the square corre-
sponding to the subtree. However, as illustrated by Figure 13.13, the x and
y ranges might overlap without the circle actually intersecting the square.
Write a function that accurately determines if a circle and a square intersect.

Sec. 13.6 Projects 475

13.15 (a) Show the result of building a bintree from the following points (inserted
in the order given). Assume the tree is representing a space of 64 by 64
units. A (20, 20), B (10, 30), C (25, 50), D (35, 25), E (30, 45), F (30,
35), G (45, 25), H (45, 30), I (50, 30).

(b) Show the result of deleting point C from the tree you built in part (a).
(c) Show the result of deleting point F from the resulting tree in part (b).

13.16 Compare the trees constructed for Exercises 12 and 15 in terms of the number
of internal nodes, full leaf nodes, empty leaf nodes, and total depths of the
two trees.

13.17 Show the result of building a point quadtree from the following points (in-
serted in the order given). Assume the tree is representing a space of 64 by
64 units. A (20, 20), B (10, 30), C (25, 50), D (35, 25), E (30, 45), F (31,
35), G (45, 26), H (44, 30), I (50, 30).

13.6 Projects

13.1 Use the trie data structure to devise a program to sort variable-length strings.
The program’s running time should be proportional to the total number of
letters in all of the strings. Note that some strings might be very long while
most are short.

13.2 Define the set of suffix strings for a string S to be S, S without its first char-
acter, S without its first two characters, and so on. For example, the complete
set of suffix strings for “HELLO” would be

{HELLO,ELLO,LLO,LO,O}.

A suffix tree is a PAT trie that contains all of the suffix strings for a given
string, and associates each suffix with the complete string. The advantage
of a suffix tree is that it allows a search for strings using “wildcards.” For
example, the search key “TH*” means to find all strings with “TH” as the
first two characters. This can easily be done with a regular trie. Searching
for “*TH” is not efficient in a regular trie, but it is efficient in a suffix tree.
Implement the suffix tree for a dictionary of words or phrases, with support
for wildcard search.

13.3 Revise the BST class of Section 5.4 to use the AVL tree rotations. Your new
implementation should not modify the original BST class ADT. Compare
your AVL tree against an implementation of the standard BST over a wide
variety of input data. Under what conditions does the splay tree actually save
time?

476 Chap. 13 Advanced Tree Structures

13.4 Revise the BST class of Section 5.4 to use the splay tree rotations. Your new
implementation should not modify the original BST class ADT. Compare
your splay tree against an implementation of the standard BST over a wide
variety of input data. Under what conditions does the splay tree actually save
time?

13.5 Implement a city database using the k-d tree. Each database record contains
the name of the city (a string of arbitrary length) and the coordinates of the
city expressed as integer x- and y-coordinates. Your database should allow
records to be inserted, deleted by name or coordinate, and searched by name
or coordinate. You should also support region queries, that is, a request to
print all records within a given distance of a specified point.

13.6 Implement a city database using the PR quadtree. Each database record con-
tains the name of the city (a string of arbitrary length) and the coordinates
of the city expressed as integer x- and y-coordinates. Your database should
allow records to be inserted, deleted by name or coordinate, and searched by
name or coordinate. You should also support region queries, that is, a request
to print all records within a given distance of a specified point.

13.7 Implement a city database using the bintree. Each database record contains
the name of the city (a string of arbitrary length) and the coordinates of the
city expressed as integer x- and y-coordinates. Your database should allow
records to be inserted, deleted by name or coordinate, and searched by name
or coordinate. You should also support region queries, that is, a request to
print all records within a given distance of a specified point.

13.8 Implement a city database using the point quadtree. Each database record
contains the name of the city (a string of arbitrary length) and the coordinates
of the city expressed as integer x- and y-coordinates. Your database should
allow records to be inserted, deleted by name or coordinate, and searched by
name or coordinate. You should also support region queries, that is, a request
to print all records within a given distance of a specified point.

13.9 Use the PR quadtree to implement an efficient solution to Problem 6.5. That
is, store the set of points in a PR quadtree. For each point, the PR quadtree
is used to find those points within distance D that should be equivalenced.
What is the asymptotic complexity of this solution?

13.10 Select any two of the point representations described in this chapter (i.e., the
k-d tree, the PR quadtree, the bintree, and the point quadtree). Implement
your two choices and compare them over a wide range of data sets. Describe
which is easier to implement, which appears to be more space efficient, and
which appears to be more time efficient.

Sec. 13.6 Projects 477

13.11 Implement a representation for a collection of (two dimensional) rectangles
using a quadtree based on regular decomposition. Assume that the space
being represented is a square whose width and height are some power of
two. Rectangles are assumed to have integer coordinates and integer width
and height. Pick some value c, and use as a decomposition rule that a region
is subdivided into four equal-sized regions whenever it contains more that c
rectangles. A special case occurs if all of these rectangles intersect at some
point within the current region (because decomposing such a node would
never reach termination). In this situation, the node simply stores pointers
to more than c rectangles. Try your representation on data sets of rectangles
with varying values of c.

